
Are CORBA Services Ready to Support Resource Management

Middleware for Heterogeneous Computing� �

Alpay Duman� Debra Hensgen� David St� John� and Taylor Kidd

Computer Science Department

Naval Postgraduate School

Monterey� CA �����

Abstract

The goal of this paper is to report our �ndings as
to which CORBA services are ready to support dis�
tributed system software in a heterogeneous environ�
ment� In particular� we implemented intercommunic�
ation between components in our Management System
for Heterogeneous Networks �MSHN�� using four dif�
ferent CORBA mechanisms� the Static Invocation In�
terface �SII�� the Dynamic Invocation Interface �DII��
Untyped Event Services� and Typed Event Services�
MSHN�s goals are to manage dynamically changing
sets of heterogeneous adaptive applications in a het�
erogeneous environment� We found these mechanisms
at various stages of maturity� resulting in some being
less useful than others� In addition� we found that the
overhead added by CORBA varied from a low of �	�

milliseconds per service request to a high of ��
�� mil�
liseconds per service request on workstations connec�
ted via �		 Mbits�sec Ethernet� We therefore conclude
that using CORBA not only substantially decreases the
amount of time required to implement distributed sys�
tem software� but it need not degrade performance�

� Introduction
This paper describes the experiences we had using

CORBA mechanisms to implement intercommunica�
tion in MSHN� MSHN�s goal is to support the execution
of multiple� disparate� adaptive applications� in a dy�
namic� distributed heterogeneous environment� To ac�
complish this goal� MSHN consists of multiple� distinct�
and eventually replicated distributed components that
themselves execute in a heterogeneous environment�

�This research was supported by DARPA under contract
number E���� Additional support was provided by the Naval
Postgraduate School and the Institute for Joint Warfare Analysis�

�Pronounced �mission�
�This paper focuses on the use of CORBA mechanisms to sup�

port the components of MSHN� not the applications that MSHN
itself supports� For more details concerning applications� please
see the references or contact the the authors directly�

These components have widely varying functionality�
come in and out of existence� and communicate across
heterogeneous networks� In addition to executing on
di�erent types of platforms� these components are also
likely to be written in di�erent programming languages�
We can� of course� at the expense of a great deal of pro�
grammer�s time� implement specialized naming services
to locate the appropriate component at run�time� and
specialized communication mechanisms to enable com�
munication between the heterogeneous platforms upon
which the components run� Alternatively� we can use
a general tool� such as the Common Object Request
Broker Architecture �CORBA�� to achieve the same
functionality while reducing our development time� Ex�
perience with generalized systems� such as CORBA�
has revealed that the reduction in development time
costs come at the expense of run�time performance�
which can be critical in real�time applications� This re�
search� therefore� investigates the utility and overhead
of communication mechanisms� which are implemented
according to the CORBA ��� speci�cation� to support
MSHN�s inter�component communication�

We note to the reader that our interest lies in the
CORBA mechanisms that support the development
of �possibly real�time� resource management environ�
ments� This is a very speci�c realm where system over�
heads can have a signi�cant impact on performance�
We do not explore the many and varied capabilities of
CORBA for the supporting of other environments� such
as that of distributed general database services and
video streaming� Our interest in CORBA is primarily
as a tool to reduce the time	programming investment
needed to implement our resource management system
middleware� As the services and mechanisms provided
by the CORBA ��� speci�cation� particularly Static and
Dynamic Invocation� and the Event Services� hold great
promise in this regard� we performed the series of stud�
ies detailed in this paper�

CORBA speci�es a standard to permit di�erent pro�

grams� executing on di�erent computers� to request
services from one another� CORBA�s Naming Ser�
vice and Object Request Brokers �ORBs� aid clients
in locating appropriate servers� CORBA�s static in�
vocation enables a CORBA client to make a request
of a server that is identi�ed prior to compile time� It
provides both reliable synchronous semantics and unre�
liable asynchronous semantics� In contrast� CORBA�s
dynamic invocation enables the client to locate a server
that may not be known until run�time� and provides re�
liable synchronous and asynchronous semantics� as well
as unreliable asynchronous semantics� CORBA�s event
services allow processes on one machine to place event
noti�cations intended for processes on other machines
into event queues so that the noti�cations can later be
delivered to the serving processes� This service facil�
itates multicast� This paper will not cover CORBA in
detail� but there are many other good references on the
subject
�� �� ��
� �� �� �� �� �� ��� ����

The paper is organized as follows� We �rst brie�y
describe MSHN� concentrating on the type of inter�
communication that is required by its components� A
more complete description of MSHN can be found else�
where
���� Alternate designs for facilitating commu�
nication within MSHN itself and the implementation of
these designs are presented� These designs are based
upon� respectively� static invocation� dynamic invoca�
tion� untyped event service and typed event service� In
this section� we also provide a qualitative assessment
detailing the problems that we encountered while at�
tempting to use these mechanisms within MSHN� In
a subsequent section� we describe our experiments for
evaluating these mechanisms within MSHN and present
a quantitative analysis of each of the mechanisms� Fi�
nally� we summarize our �ndings�

� The Management System for Hetero�
geneous Networks �MSHN�

In the Heterogeneous Processing Laboratory at the
Naval Postgraduate School� we are designing� imple�
menting� and testing a resource management system
called the Management System for Heterogeneous Net�
works �MSHN�� MSHN is designed as a general ex�
perimental platform for investigating issues relating to
the design and construction of future resource man�
agement systems operating in heterogeneous environ�
ments� Though MSHN is used to explore a large num�
ber of such issues� our present research focuses on �nd�
ing and developing ��� mechanisms for supporting ad�
aptive applications� ��� mechanisms for supporting the
satisfaction of user and system de�ned Quality of Ser�
vice �QoS� requirements� and ��� mechanisms for ac�
quiring and usefully aggregating measurements of both

mshnd

Scheduling Advisor

Operating Systems

Distributed Resources

RSS RRD

Client Library

M
iddlew

are

Appl.

Figure �� MSHN Conceptual Architecture

general resource availability and the resource usage of
individual tasks� A thorough and complete description
of MSHN can be found in Hensgen
����

MSHN�s architecture consists of multiple instanti�
ations of each of the components enumerated below�

� a Client Library �one for each executing applica�
tion to be managed by MSHN��

� a Scheduling Advisor �hierarchically replicated��

� a Resource Requirement Database �hierarchically
replicated��

� a Resource Status Server �hierarchically replic�
ated�� and

� a MSHN Daemon �when needed��

Figure �� the MSHN Conceptual Architecture� shows
all of the MSHN components �shaded� as translucent
layers executing on distributed platforms� A translu�
cent layer is one that can be bypassed by layers that
are above or below it� For example� the MSHN Dae�
mon �mshnd� can interact directly with the operating
systems layer� bypassing the Resource Status Server�
the Resource Requirement Database and the Schedul�
ing Advisor� In the environment that MSHN supports�
both MSHN and non�MSHN applications may be ex�
ecuting at any given time� Figure � illustrates how these
components� along with various MSHN and non�MSHN
applications� might actually be distributed among dif�
ferent heterogeneous machines�

Client Library Client Library

Client Library

mshnd mshnd

mshndmshnd

Appl.Appl.

Appl. Appl.

Appl.

Appl.
Client Library

Operating System-1

Machine-1

Operating System-2

Machine-3

Scheduling Advisor

RSS

RRD

Operating System-3

Machine-4

Operating System-4

Machine-2

M
id

d
le

w
a
re

M
id

d
le

w
a
re

M
id

d
le

w
a
re

M
id

d
le

w
a
re

Figure �� Example MSHN Physical Instantiation

This research investigates how communication
between the components can be facilitated� As such�
the MSHN description in the remainder of this section
emphasizes that communication�

Figure �� MSHN�s Software Architecture� illustrates
all of the interactions between the components� MSHN
has a peer�to�peer architecture��

We now present two� and three�tier views to give
a clear understanding of the interactions between the
components� Generally� many applications� each linked
with the MSHN Client Library� will be running at any
given time� They will need to communicate with a
Scheduling Advisor �SA� to request the appropriate re�
sources needed to start new processes� They may also
communicate with a MSHN Daemon when receiving
their recommended schedule� Additionally� their Client
Libraries update the Resource Requirement Database
�RRD� and the Resource Status Server �RSS� with the
expected resource requirements of the applications and
current resource availability within the MSHN system�

�When callbacks are used the client and the server have a
peer�to�peer relationship� In distributed systems� callbacks are
useful as a mechanism for performing asynchronous communic�
ation� Callbacks transmit event noti�cations without blocking
the event originator� Callbacks 	ow from the servers towards the
clients�

Client Library

Application

Daemon
MSHN

Update
Resource Status

Server

Scheduling Advisor

Database

Resource Requirements

Update Response
Query/

Back
Call

Response
Query/

Response
Query/Back

Call

Figure �� MSHN�s Software Architecture

Figure
 illustrates this updating interaction as a two�
tiered client	server architecture� The arrows labeled
��� designate the Resource Requirements Database up�
date path� and those labeled ���� the Resource Status
Server update path� The update frequency of the Re�
source Status Server is expected to be high so that it� in
turn� can supply the Scheduling Advisor with accurate
and current information�

We anticipate that the frequency of the updates will
load down the network� and cause a considerable pro�
cessing load on the Resource Status Server and the Re�
source Requirement Database� To avoid these loads�
MSHN�s design includes proxy Resource Status Servers
and Resource Requirement Databases that will come in
and out of existence as required to minimize the number
of updates� These proxies will �lter gathered informa�
tion and update the hierarchical Resource Status Server
and the hierarchical Resource Requirement Database
when necessary�

In one view� the Scheduling Advisor functionally
resides between the information needed to create a
schedule �the Resource Status Server and the Resource
Requirement Database� and the requesters of schedules
�applications linked with the Client Library�� This in�
dicates that there will be a high communication rate
to and from the Scheduling Advisor� We can there�
fore also view MSHN as having three tiers� where the
Scheduling Advisor is the second tier� and the Resource
Status Server and the Resource Requirement Database
are in the third tier �see Figure ��� When the Client
Library ��rst tier� contacts the Scheduling Advisor for

RRDRSS

Application

Client Library

Daemon

MSHN

Application

Client Library

2
1

2
1

First tier

Second tier

Figure
� Two�tiered Architectural View of MSHN Ar�
chitecture

Application

Client Library

RSS

SA

Third tier

Second tier

First tier
Client Library

SA

RRD

Application
Daemon
MSHN

1

2
3 4

5

6 6a

1a

1b

Figure �� Three�tiered View of MSHN

a schedule� either directly or via the MSHN Daemon
�the arrows labeled ��� and ��a��� the Scheduling Ad�
visor queries both the Resource Status Server �arrows
��� and ����� and the Resource Requirement Database
�arrows �
� and ���� before it computes its schedule
and sends it to the MSHN Daemon or client library de�
pending upon which is more appropriate �arrows ���
and ��a��

Although the Client Libraries are the initiators of
many of the communication chains through the MSHN
system� other chains are initiated by the Resource
Status Server� For example� in the case where a viola�
tion of a deadline occurs because of a change in resource
availability� the Resource Status Server will trigger the
Scheduling Advisor to reschedule processes that would
not otherwise meet their deadline� The Scheduling Ad�
visor will adapt to the new situation by either changing

Application

Client Library

RSS

SA

First tier

Second tier

Third tier

2

1

Figure �� Alternate Three�tiered View of MSHN

the format� of the process or restarting it on a di�er�
ent resource� possibly via the MSHN Daemon� This
interaction is the reverse of the previously described
communication chain and can be used to de�ne another
version of a three�tiered view� �See Figure ���

Although we have shown several two and three tier
views of MSHN� the reader should understand that
these are only examples� Much larger chains will actu�
ally exist when the various components are hierarchic�
ally replicated�

� Use of CORBA Services in MSHN
and Problems Encountered

Our goal is to determine both ��� how we can best
facilitate e�cient communication between the compon�
ents in our architecture using mechanisms from the
CORBA ��� speci�cation� and ��� to determine the run�
time overhead of each of those mechanisms� Our justi�
�cation for choosing a particular mechanism included
extensibility� scalability� portability� �exibility� and ef�
�ciency�

MSHN consists of multiple� eventually replicated�
distinct distributed components that execute in a het�
erogeneous environment� These components will have
widely varying functionality� will come in and out of ex�
istence� will communicate via heterogeneous networks�
and will execute on di�erent platforms� To facilitate
the interactions between MSHN�s components� we iden�
ti�ed four mechanisms from the CORBA ��� speci�ca�

�We use the term �format� to refer to a mechanism we have
developed to support adaptive applications
����

tion that had particular promise� the Typed Event Ser�
vice� the Untyped Event Service� the Static Invocation
Interface �SII�� and the Dynamic Invocation Interface
�DII�� After settling on these four mechanisms� we im�
plemented a prototype of MSHN�s communication in�
frastructure using each of them� First we describe how
the MSHN architecture would bene�t from the both
the Typed and Untyped Event Service� the Static In�
vocation Interface �SII�� and the Dynamic Invocation
Interface �DII�� Then we discuss how we use the Nam�
ing Service within MSHN to obtain object references�
In this section� since part of the objective of this paper
is to make recommendations with regards to additions
and improvements to the evolving CORBA speci�ca�
tion� we describe and justify each of our designs� the
problems we encountered� and the solutions to which
we arrived�

��� Selection of a CORBA ORB

At the beginning of this research� we explored vari�
ous implementations of the CORBA standard� Fig�
ures � and � present a summary of the results of that
exploration�� Based upon various requirements� includ�
ing the cost of some of the implementations� the time
required to implement comparative tests� and the dur�
ation of this study� we had to limit ourselves to one
CORBA implementation� We chose the implementa�
tion that seemed� at that time� to have the most ma�
ture features relevant to MSHN� Our assumption was
that once such an implementation was found� other im�
plementations would typically have similar di�culties
and comparable performance� As such� we based our
studies around IONA�s Orbix� the implementation that
best �t this requirement�

��� Event Service

Event Service allows multiple suppliers and multiple
consumers to deliver and receive noti�cations for a set
of events� An Event Channel transparently permits
��� suppliers to send noti�cations of events and ���
consumers to receive these noti�cations� all without
knowledge of the existence of one another� Hence� the
Event Service will support the transparent replication
of MSHN system components for reliability and de�
pendability� Event Service will enable Client Libraries�
linked with di�erent concurrent applications� to com�
municate with other MSHN components seamlessly� Fi�
nally� Event Service supports a standard Application
Programming Interface �API� �e�g�� for the Push�Push

�The capabilities of the various implementations of CORBA
evolve very quickly� The content of these �gures present the
state of some of the implementations at the time this research was
performed� As the capabilities of most CORBA implementations
can quickly change� the reader is recommended to do his own
similar exploration�

Model� a single operation push�� taking a variable of
type any as a parameter� which eases the development
of MSHN system components�

Though there are four models for Event Service�
there were only two available in relatively robust in�
dustrial implementations when we performed our ex�
periments� the Push�Push Model and the Pull�Pull
Model
�
�� Using the Pull�Pull Model creates an ad�
ditional load on the consumers� Because our servers�
the consumers in this case� must minimize their use of
computing resources even when there is no event to be
delivered on the Event Channel� we chose to use only
the Push�Push Model�

����� Using Event Service in MSHN

Figure � illustrates the use of Event Service to organize
communication in the MSHN architecture� In this ap�
proach� the components of MSHN must register them�
selves as both a consumer and a supplier to the Event
Channel� The Event Channel acts as the glue between
all of the components and delivers noti�cations to each
of them�

����� Problems with Initial Approach

Although this approach helps to organize MSHN�s
communication� providing transparent reliability and
scalability� some problems can be seen involving both
performance and the CORBA ��� speci�cation� Some
of the problems with this approach are identical to the
problems identi�ed by Schmidt and Vinoski in the ana�
lysis of their stock market application
���� We �rst
summarize their �ndings in the �rst two items below�
Loss of Events in the System� and Problems with the
Untyped Event Service� Then we enumerate additional
problems that are particular to using CORBA within
the MSHN architecture� Lastly� we look at how to im�
plement a component that is both a supplier and a con�
sumer�
Loss of Events in the System� Event Service

guarantees delivery of noti�cations to all registered con�
sumers as long as the Event Service process does not
fail�� However� in the Event Service speci�cation� per�
sistency of events in the Event Channel is not required�
Therefore� if an Event Service process does fail� un�
delivered noti�cations in the system may be lost�

The loss of noti�cations is fatal for MSHN because
we are creating an environment for mission�critical ap�
plications� The obvious solution to this problem is to

�Although there are many de�nitions of failure� we speci�cally
mean that if the Event Service does not fail� then all consumers
receive the correct value� This agrees with Lamport
s de�nition
of failure
����

Vendor Naming Life Cycle Event Trading Identity Relationships

Expersoft yes yes yes
Sun yes yes yes yes yes
IONA yes yes yes

Visigenic yes yes
BEA

ICL yes
HP yes yes yes yes
IBM yes yes yes yes
Chorus

OOT yes yes
Electra yes yes yes
Xerox

BBN yes yes

Figure �� Available Services

Vendor Concurrency Externalization Persistency Transactions Security

Expersoft

Sun

IONA yes
Visigenic yes
BEA yes
ICL yes yes
HP yes
IBM yes yes yes yes
Chorus

OOT yes
Electra

Xerox

BBN yes

Figure �� Available Services �Continued�

Client Library

Adaptive
App.

Resource Status
Server

Scheduling
Advisor

Resource
Requirements

Database

Event Channel

Query-
Response

New Schedule

Update

Update

Query/Response

Violation

Query/Reponse

Figure �� Using Event Service in MSHN

rede�ne the Event Service speci�cation to include per�
sistency for the undelivered noti�cations in the Event
Channel� The OMG has been de�ning this requirement
in the Noti�cation Service speci�cation
��� However�
no vendors had implemented this new speci�cation at
the time of this research�

Problems with Untyped Event Service� The
Untyped Event Service does not specify any way to �l�
ter noti�cations� Therefore when using this service� all
noti�cations are received by all registered consumers�

Passing all of these noti�cations in MSHN� many of
which will be discarded by any particular consumer�
through the network will increase the network load
between the Event Channel and the consumer� Ad�
ditionally� the consumers must �lter events and convert
the parameters that have type any to the type that is
expected� In this case� there is an additional and un�
wanted load on the consumers to process all the events
received� Finally� when more suppliers� in particu�
lar more applications� register with the Untyped Event
Channel� more events will be generated in the system�
Since the Untyped Event Channel delivers each event
to all of the registered consumers and the consumers
will �lter all the events� the network load and consumer
load will increase rapidly�

To handle this problem� we can use Typed Event
Channels which �lter the noti�cations according to their
type� With this solution� the consumers receive only
the noti�cations for which they register� decreasing the
network tra�c� In this solution� one Event Channel
processes all of the noti�cations and delivers them only

Client Library

Adaptive
App.

Resource Status
Server

Scheduling
Advisor

Resource
Requirements

Database

Event Channel

Event Channel

Event Channel

Event Channel

Event Channel

Event Channel

Schedule

Response

Query

Query

Update

Event Channel

Request Schedule

Event Channel

Update

Response

Figure ��� Using UntypedEvent Service

to the corresponding consumers� This also lightens the
loads on the consumers because they avoid having to ex�
amine and discard events not meant for them� However�
we note that it increases the computational load on the
Event Channel� Later� we compare the run�time per�
formance of Typed Event Channel to Untyped Event
Channel using this approach in the MSHN architecture�

Alternatively� since we only have �ve di�erent types
of components in MSHN� we could use di�erent chan�
nels for each connection between these components� In
this approach� each Event Channel will only support
one noti�cation type� For example� for the Client Lib�
rary � Scheduling Advisor Event Channel� we will have
the Client Library as a supplier� the Scheduling Ad�
visor as a consumer� and the possible client scheduling
requests as the types of the noti�cations� Each MSHN
component may be replicated by registering the addi�
tional �identical� components to the same Event Chan�
nel� This solution is shown in Figure ���

Obviously� some combination of these two solutions
may be best� That is� the Typed Event Channel itself
can become a bottleneck in the �rst solution� There�
fore� replication of Typed Event Channels may better
�t MSHN�s requirements� In this paper� we focused on
the careful analysis of individual solutions rather than
empirically exploring the exponentially sized solution
space that combining these two techniques will create�

How to implement a component that is both

a supplier and a consumer in a system in order

to minimize the run�time overhead� All compon�
ents of MSHN are both consumers and suppliers� Also�

and perhaps particular to MSHN� when a component
receives a noti�cation� it usually becomes a supplier
by generating another noti�cation and delivering it to
the appropriate Event Channel� Figure �� shows the
process of passing noti�cations from the Client Lib�
rary to the Scheduling Advisor using the push�� oper�
ation� It reveals how the Scheduling Advisor changes
from a consumer to a supplier� In the Untyped Event
Service�s Push�Push Model� the supplier �here the Cli�
ent Library� invokes a default push�� operation on the
Event Channel which in turn invokes a push�� opera�
tion supplied by the developer of the consumer �here the
Scheduling Advisor�� In the push�� operation that the
developer supplied for the Scheduling Advisor �as a con�
sumer�� the developer of the Scheduling Advisor invokes
the default push operation on the Scheduling Advisor
� Resource Requirement Database �SA � RRD� Event
Channel �which of course� invokes the push�� operation
supplied by the developer of the Resource Requirements
Database��

The design issue here is to determine how to sup�
ply the Interoperable Object Reference �IOR� of the
SA � RRD Event Channel to the push�� operation of
the Scheduling Advisor� We want to avoid using the
Naming Service every time the push�� operation �here
the push operation of the Scheduling Advisor� is in�
voked� Instead� the developer can locate the SA�RRD
Event Channel in the servant implementation� That is�
the servant implementation will obtain the IOR for the
SA�RRD Event Channel� stringify the IOR� and stor�
ing it in a �le� The push�� operation implementation
can retrieve these IORs from their �les� as needed� and
deliver generated events� thereby pushing the corres�
ponding noti�cations to the channel�

Therefore in the Untyped Event Service� to react
to the noti�cation �here a request for a schedule� that
the consumer receives� the developer of the consumer
�here the Scheduling Advisor� must override the default
push�� operation between the Event Channel and the
consumer� For example� when the Scheduling Advisor
receives an event from the Client Library requesting a
schedule� it will generate a query noti�cation for the
Resource Requirement Database and deliver it to the
SA � RRD Event Channel� In this case� the Scheduling
Advisor becomes a supplier and is required to locating
the SA � RRD Event Channel� To avoid locating the
Event Channel to which the supplier will deliver the
noti�cation� via the Naming Service inside the push��
operation� the developer can locate the Event Channel
in the servant implementation and obtain IORs of it�
Then� the servant implementation can stringify these
IORs and store them in �les�

Adaptive
App.

Client Library

supplier
push()

default

Event Channel

Resource Requirements

Database
consumer
push()

overridden by the developer

overridden by the developer

supplier
push()

default

consumer
push()

Event Channel
Scheduling
Advisor

Figure ��� Using push�� Operation

��� Remote Invocations

In this section� we discuss using remote invocations
to coordinate the interactions of MSHN�s components�
Since both the Static Invocation Interface �SII� and the
Dynamic Invocation Interface �DII� have similar remote
invocationmechanisms� we �rst de�ne the general prob�
lems encountered with both� and then enumerate any
additional ones that are speci�c to the DII�

The same functionality described above using the
Event Service can be implemented using remote invoc�
ation� The most important di�erence is that the rep�
lication of the components is not as easy as it is using
Event Service� To support replication using remote in�
vocation� clients must make multiple invocations rather
than just the one needed in Event Service�

����� General Approach using Remote Invoca�

tion

Figure �� shows our approach that uses remote invoc�
ations �i�e�� either the Static Invocation Interface �SII�
or the Dynamic Invocation Interface �DII�� to establish
inter�component communication in the MSHN archi�
tecture� We chose from two communication methods
available in both the SII and DII� one�way invocation
and synchronous invocation� depending upon whether
reliable communication is required�

When using the SII� a component requires compile�
time knowledge of the Interface Description Language
�IDL� interface of the target component from which it
will request a service� In contrast� the same compon�
ent� using the Event Service� makes its request via a

updateRSS()

queryRSS()

Client Library

Adaptive
App.

Resource Status
Server

Scheduling
Advisor

Resource
Requirements

Database

newSchedule()

queryRRD()

updateRRD()

requestSchedule()

Figure ��� Using Remote Invocations in MSHN

standard API that is independent of the target com�
ponent and its functionality� However� when using the
DII� the components of MSHN can invoke operations on
other components without requiring precompiled stubs�
Thus� we may substitute di�erent instantiations of such
components without requiring a re�linking� Addition�
ally� using the DII allows us to invoke objects using de�
ferred synchronous invocation� Such invocation is not
available from the SII within the current CORBA ���
speci�cation� With deferred synchronous invocation�
the clients may continue their computation instead of
waiting for the results of the previously invoked opera�
tions to be delivered�

����� Problems with Using the Initial Remote

Invocation Approach

We now enumerate some problems with our initial re�
mote invocation approach�
Lack of a Standard Thread Mechanism� Our

�rst design decision was to implement the remote in�
vocations with threads� i�e�� handling each invocation
of a component using a di�erent thread� Using threads
would avoid any data synchronization problems and
support fairness for each schedule request� However�
the CORBA ��� speci�cation does not de�ne how the
threads must be implemented� Therefore� each vendor
has come up with their own solution� leading to applic�
ations that are non�portable� For example� if you use
IONA�s Orbix as your development environment� and
IONA�s Filters to implement your threads� you cannot
use the same implementation on Inprise�s Visibroker

because Inprise�s solution for handling threads uses In�
terceptors�

We avoided non�compliant extensions of the vendor
when implementing our prototypes� Therefore� we were
unable to use threads for any of our prototypes� al�
though the usage of threads would have improved the
throughput of schedule requests�

Best�E�ort Semantics� One�way invocation has
best�e�ort semantics� Thus� there is no guarantee that
the requested method is actually invoked� In this mech�
anism� the client continues its processing immediately
after initializing the request and never synchronizes
with the completion of the request� Hence� one�way
invocation is not a good mechanism for most of the
MSHN system because it is not reliable�

However� using one�way invocations for frequent
short�term updates could be cost e�ective in some cases
in MSHN� There are two advantages to selectively using
best�e�ort asynchronous semantics between MSHN�s
Client Library and Resource Status Server� First� the
Client Library can continue its computation immedi�
ately without blocking� Second� we expect that the Re�
source Status Server will be updated very frequently�
Therefore� we can a�ord the delay needed to get the
accurate status of a resource with the next update in�
stead of forcing the use of a more reliable transmission
mechanism�

����� Problems with Our Initial Approach that

are Speci�c to using DII

We now enumerate some problems with our initial ap�
proach that are speci�c to using DII�

The AdditionalOverhead of the DII� A straight
forward DII approach requires ��� method invocations
in order to invoke a single remote method� looking
up the interface name� getting the operation identi�
�er	parameters� and creating the request �which may
also be remote�� This would add a lot of overhead to
run�time performance� which would be unacceptable in
MSHN�s architecture�

In MSHN however� we know the interface of the com�
ponents� i�e�� the operation identi�er� the parameters
and the return type� when we are developing the cli�
ent applications� Thus� we can obtain the �exibility
and bene�ts the DII�s deferred synchronous invocation�
without having to pay the overhead of querying the In�
terface Repository for the interface information� We do
note that if a deferred synchronous invocation� such as
Promises
���� had been speci�ed as part of CORBA�s
static invocation interface� the use of DII would not be
necessary in this case� We compare the performance of
the SII and DII in the results section�

��� Using the Naming Service

We used the Naming Service to obtain object ref�
erences in each of our prototypes� For the static and
dynamic invocation interfaces� all components must re�
solve names only once� when they are instantiated� to
obtain IORs via the Naming Service� References within
all components� except the Client Library� are stored in
�les for future use as we described previously� The com�
ponents do not use the Naming Service unless the IORs
that they have are no longer valid� We use the excep�
tion handling mechanism in CORBA to catch non�valid
IORs� and then use the Naming Service to obtain new
valid ones�

To improve the run�time performance of the Event
Service implementations� we registered each compon�
ent with the appropriate Event Channel� We resolve
the Event Channel references using the Naming Service�
Then we query the Event Channels to obtain the refer�
ences for the Proxy Push Suppliers� stringify them� and
then store them in �les� When a component receives
an event� and generates another event in response to
the one it received� that component reads the appropri�
ate �le to obtain the stringi�ed reference and uses this
reference to push the event to the corresponding Event
Channel�

� Quantitative Results
We described our design decisions for implementing

our prototypes in the previous section� In this section�
we discuss the performance results of these di�erent
prototypes� First� we describe our test bed� Then we
explain our tests and enumerate their results�

��� Hardware and Software Used in the
Test Bed

As discussed earlier at the beginning of this re�
search� we surveyed the available implementations of
CORBA to determine what services were supported�
�See Figure � and ��� Based upon the robustness and
availability of services� particularly the Typed Event
Service� we chose IONA Technologies� CORBA imple�
mentation� speci�cally OrbixMT���c� OrbixNames���c�
OrbixEvent���c �Untyped Event Service� and Or�
bixEvent���b �Typed Event Service� built using the
SunSparc C�� Compiler
���

We ran our tests on SunSparc Station �� hosts with
���MHz CPUs and ��� MB of RAM each� running the
Solaris ��� operating system� The hosts were connected
via a ��� Mbits	sec Ethernet LAN�

To obtain correct results in the tests utilizing the
network� we used the Network Time Protocol to syn�
chronize the system clocks of the hosts� We found that
the system clock on the SunSparc �� has a skew of ap�
proximately � milliseconds every �� minutes� Therefore

in order to minimize the di�erence between the vari�
ous system clocks� we synchronized the clocks every �
minutes and ran the tests immediately after the syn�
chronization�

��� Experiments

We determined the overhead of each CORBA mech�
anism on a single machine� and then measured the re�
sponse times over the network of the various mechan�
isms� that is� the total time required to service ����
scheduling requests� This interval begins when the Cli�
ent Library requests a schedule from the Scheduling
Advisor and includes all processing up until the time
that the Client Library receives a response� This dura�
tion includes the time spent querying the Resource Re�
quirement Database and the Resource Status Server�
At the time of this testing� we did not have a fully
functional Scheduling Advisor� so we emulated its ex�
ecution by having the thread that was computing a
schedule pause for �� seconds� We chose this duration
based upon the average execution time of a set of ��
scheduling algorithms proposed for MSHN�s repertoire
by Siegel
����

To assess the overhead of CORBA� we included one
non�CORBA test� This base case consists of an ap�
plication linked with all the MSHN components and
executing as a single process on a single host� This
non�CORBA test uses local method invocation to per�
form MSHN component intercommunication� In order
to assess CORBA�s overhead� we performed two sets
of tests� In the �rst set� we compared this base case
against test cases where we ran all the MSHN compon�
ents on the same machine and had them communicate
via CORBA mechanisms� In the second� we compared
the latter tests against ones where the MSHN compon�
ents are distributed across di�erent machines�

With the exception of the non�CORBA base case�
we ran all tests both on a single machine and over the
network using di�erent workstations to execute each
of the Client Library� the Resource Status Server� the
Resource Requirements Database and the Scheduling
Advisor�

All single machine CORBA tests were executed us�
ing four di�erent processes� The non�CORBA single
machine tests executed completely in a single process�
with all MSHN calls being implemented as ordinary
C�� function calls� In implementing both static in�
vocation and dynamic invocation for a single machine�
we used synchronous semantics�

The average inter�arrival rate of schedule requests
varies with the facility and time of day� Therefore� we
ran all of our tests for two di�erent circumstances� In
the �rst� the inter�arrival rate of the requests is less
than the service time� i�e�� each request is completed

by the system before the next request arrives on av�
erage� The second represents the situation that exists
in the middle of a burst� In this case� the inter�arrival
rate of the requests is greater than the service time� i�e��
some requests must be queued to be handled later� The
�rst case is important in determining performance un�
der normal conditions� but it is equally important for
us to determine that the system neither ��� fails com�
pletely when heavily loaded� nor ��� incurs overhead
that varies exponentially with the number of requests
pending� Indeed� no typed event service that we have
tested to date could pass the above stress tests�

Unfortunately� the system clocks had insu�cient
granularity to measure precisely the total time to pro�
cess a single request in our non�CORBA implementa�
tion� We therefore �rst read the system clock� We then
generate a request and await its response� repeating
this ���� times� Lastly� we read the clock again� and
determine the total time �for ���� consecutive request�
response pairs�� Because requests are generated con�
secutively� and because each request uses synchronous
semantics to make the invocations� we call this set of
tests� the consecutive synchronous tests�

To simulate the case where many requests occur
within a short time frame� we generated requests every
��� seconds� on average� in our base case� For this set
of tests� we used asynchronous calls within the applic�
ation to start the schedule request chain in the DII and
SII implementations� Event Service is meant to be used
asynchronously� so there was no special programming
required to implement these cases� We call this set
the bursty asynchronous tests because during such
a burst� the requests arrive faster than the expected
required service time and queue up for the Scheduling
Advisor�

For another of our projects� Schnaidt and Duman
implemented a fully optimized version of an applica�
tion using sockets and compared it to an equivalent
CORBA implementation to determine CORBA�s over�
heads when running over the network
���� As such�
we did not implement such a socket implementation
of MSHN� In the following paragraphs� we draw some
conclusions based both on the Schnaidt�Duman exper�
iments and those reported here�

��� Results

We summarize our quantitative results in Figure ���
The times shown are the actual execution times� in
seconds� for ���� requests� We have included a schedul�
ing time of �� seconds per request and have not simu�
lated the execution time of the application�

In order to fully understand these results� we must
�rst explain some anomalies that we observed in the
Unix calls we used to emulate the Scheduling Advisor

Con�g� Communication Local Network

Mechanism

Non�CORBA ����� N	A
SII ����
 �����

Consec� DII ����� ����

Synch� Untyped Event ����
 �����

Typed Event ����� �����
Non�CORBA ����� N	A

SII ����� �����
Bursty DII ����� �����
Asynch� Untyped Event ����� ��
�

Typed Event �
�� ����
�for ��� requests�

Figure ��� Results of the Generic Experiments for ����
Requests

�select��� and the request generation inter�arrival
rate �ualarm���� The average of the actual select��
times was ��� microseconds more than the requested
�� seconds� We also observed an average of �� mil�
liseconds error for the ualarm�� requests of �� milli�
seconds�

As expected� there is signi�cant overhead in using
CORBA for communication� and therefore across more
than one address space� as compared to local invoc�
ations within a single address space� In our earlier
project� we noted similar results as well as substantial
overhead when an optimized non�CORBA local socket
implementation was compared to a local CORBA im�
plementation
���� The e�ciency of the socket imple�
mentation on a single machine is due to its use of shared
memory� However� even if a CORBA implementation
used shared memory� comparable performance would
not be obtained� Unfortunately� the CORBA speci�ca�
tion requires all parameters of a request to be conver�
ted to an external� machine independent data repres�
entation� even if the target object resides on the same
machine� Also� in that earlier project� we noted that
a networked CORBA implementation� which required
less than �� of the time to implement as compared
to the socket implementation� had only ��� more run�
time overhead� Since our results are comparable here�
and because we did not implement a highly optim�
ized MSHN socket implementation� we will limit the
remainder of our remarks to comparing the perform�
ance of various CORBA implementations of MSHN�

Static invocation is generally the fastest intercom�
munication mechanism available in CORBA
��� Even
though dynamic invocation is generally much slower� we
see that the performance of dynamic invocation� when
we know the interfaces at development time� is close

Communication Added

Mechanism Overhead

SII ����
DII ����

Untyped Event �
��
Typed Event ����

Figure �
� Added Overhead for Bursty Asynchronous
Test Case over the Network

to that of static invocation� However� we note that the
most e�cient implementation would likely be available
from a deferred synchronous Static Invocation Inter�
face� We recommend that such semantics� similar to
those in Promises
���� be considered for adoption into
the CORBA speci�cation�

The comparison between the consecutive synchron�
ous and bursty asynchronous tests seems surprising at
�rst glance� One would normally expect that a system
loaded with bursty requests would not perform better
than an unloaded system� To understand the reason for
this performance improvement� we must further elabor�
ate on the client application�s use of the Naming Ser�
vice� In the consecutive case� the Client Library obtains
the reference of the Scheduling Advisor from the Nam�
ing Service immediately prior to making each request�
However� in the bursty asynchronous case� the Client
Library obtains all of the references asynchronously�
Thus in the bursty asynchronous case� obtaining these
references overlaps with the actual computation� Un�
fortunately� we will only expect to see this improvement
in the actual MSHN implementation if the Scheduling
Advisor is executing on a dual processor machine� In
our experiments� the emulated Scheduling Advisor is
actually blocked while the Naming Service is resolving
addresses�

In the
�machine network tests� the number of con�
text switches required between MSHN�s components
and the Object Request Broker is substantially re�
duced� Multiple components actually execute simul�
taneously� and thus run�times were smaller�

As seen in Figure ��� the Untyped Event Service
adds more overhead than either static or dynamic invoc�
ation because the Event Service process is the bottle�
neck in the system� Of course in an overall evaluation�
this additional overhead must be balanced against the
reduced cost with which information can be delivered
to replicated system components�

In addition to the tests described above� we replic�
ated the Untyped Event Service to see whether any
speedup could be obtained by distributing the load of
the Event Service process� First we created two Event

Service processes� one on the same host as the applic�
ation and the other on the same host as the Schedul�
ing Advisor� in an attempt to achieve some speed up�
This approach performed worse than the single Event
Service process� Upon analysis� we determined that
it introduced unnecessary network communication and
placed the Event Service processes on the busiest hosts�
Then we moved the Event Service processes to the same
hosts as the Resource Requirements Database and the
Resource Status Server� Figure �� shows the speedup
we observed with this con�guration� We also ran tests
using four distributed Event Service processes� Un�
fortunately� probably because of the excessive amount
of communication� this approach performed no better
than using a single Event Service process�

In MSHN�s Typed Event Service implementation� all
of the communication passes through a single process�
The CORBA implementations that we used� failed in
this bursty asynchronous case� In Figure ��� we in�
clude the time required to process ��� requests for the
bursty asynchronous case� Since the current imple�
mentations of Typed Event Service do not allow replic�
ation� we could not run a replicated test with the Typed
Event Service as we did with the Untyped Event Ser�
vice� Hence� we believe that the Typed Event Service
is not ready to be used in middleware to support het�
erogeneous distributed computing�

� Conclusions
In this paper� we described our experiences using

mechanisms of the CORBA ��� speci�cation to facilit�
ate communication in a resource management system
that is both designed to manage distributed hetero�
geneous applications� and is itself distributed and het�
erogeneous� In our qualitative assessment of CORBA
���� we found several minor problems and recommen�
ded the addition of deferred asynchronous semantics
to CORBA�s Static Invocation Interface� We found
that both CORBA�s static invocation and dynamic
invocation� when used solely to obtain asynchronous
semantics� were e�cient enough to support distrib�
uted heterogeneous resource management systems� We
found that substantial work is needed to provide imple�
mentations of Typed Event Services that can handle
the loads placed on them when requests occur in a
bursty fashion� We also determined that while Untyped
Event Services add substantial overhead as compared
to static invocation� they may still be desirable in the
case where multicast of requests is desired� particularly
if they are replicated and themselves wisely allocated
to machines in the system� In summary� many of the

�Typed Event Service is new in the CORBA ��� speci�cation
and not many CORBA products have this service available as
yet�

Replication All SA and Client RRD and RSS

Mechanism Hosts Hosts

Bursty Two Event Pro� N	A ��
��� ����

Asynch� Four Event Pro� ������ N	A N	A
Consec� Two Event Pro� N	A ������ ������
Synch� Four Event Pro� ������ N	A N	A

Figure ��� Results of the Untyped Event Service Special Cases

existing CORBA services can be quite useful in im�
plementing resource management systems for hetero�
geneous computing� and other CORBA services hold
substantial promise for the future�

� Acknowledgements
The authors would like to thank Ted Lewis for his

suggestions during this research as well as for sharing
his broad understanding of the motivation behind the
CORBA speci�cations�

References

�� Robert Orfali� Dan Harkey� and Jeri Edwards� In�

stant CORBA� John Wiley� New York� �����

�� Robert Orfali� Dan Harkey� and Jeri Edwards�
Distributed Objects� John Wiley� New York� �����

�� Sean Baker� CORBA Distributed Objects Using
Orbix� Addison Wesley Longman Limited� Essex�
�����

� Robert Orfali� Dan Harkey� and Jeri Edwards�
The Essential Client�Server Survival Guide� John
Wiley� New York� �����

�� IONA Technologies PLC� Orbix Programmer�s
Reference Manual� October �����

�� IONA Technologies PLC� Orbix Programmer�s
Guide� October �����

�� Object Management Group� CORBA ��� Speci�c�
ation� February �����

�� Object Management Group� Naming Service Spe�
ci�cation� November �����

�� Object Management Group� Event Service Spe�
ci�cation� November �����

��� Steve Vinoski� CORBA� Integrating diverse ap�
plications within distributed heterogeneous envir�
onments� IEEE Communications Magazine� �
����
February �����

��� Douglas C� Schmidt and Steve Vinoski� Overcom�
ing drawbacks in the OMG events service �column
���� SIGS C�� Report Magazine� June �����

��� Debra A� Hensgen� Taylor Kidd� Matthew C�
Schnaidt� David St� John� Howard Jay Siegel�
Tracy D� Braun� Muthucumaru Maheswaran�
Shoukat Ali� Jong�Kook Kim� Cynthia Irvine� Tim
Levin� Roger Wright� Richard F� Freund� Michael
Godfrey� Alpay Duman� Paul Car�� Shirley Kidd�
Viktor Prasanna� Prashanth Bhat� and AmmarAl�
hussaini� An overview of MSHN� A Management
System for Heterogeneous Networks� In �th� IEEE
Workshop on Heterogeneous Computing Systems
�HCW�

�� San Juan� Puerto Rico� April �����
IEEE� IEEE� invited�

��� John Kresho� Quality network load informa�
tion improves performance of adaptive applica�
tions� Master�s thesis� Naval Postgraduate School�
September �����

�
� IONA Technologies PLC� OrbixEvents Program�
mer�s Guide� December �����

��� Leslie Lamport� Robert Shostak� and Marshall
Pease� The byzantine generals problem� ACM
Transactions on Programming Languages and Sys�
tems�
��������
��� �����

��� B� Liskov and L Shirira� Promises� Linguistic
support for e�cient asynchronous procedure calls
in distributed systems� Proceedings SIGPLAN���
Conference Programming Design and Implement�
ation� �����

��� Tracy D� Braun� Muthucumaru Maheswaran�
Howard Jay Siegel� Noah Beck� Ladislau Boloni�
Albert I� Reuther� James P� Robertson� Mitchell D�
Theys� and Bin Yao� A taxomony for describ�
ing matching and scheduling heuristics for mixed�
machine heterogeneous computing systems� Pro�
ceedings of the Workshop on Advances in Parallel
and Distributed Systems �ADAPS�� �����

��� Matthew Schnaidt and Alpay Duman� A compar�
ison of Unix sockets and CORBA in a distrib�
uted communication intensive application� Tech�
nical Report �� Naval Postgraduate School� �����

Alpay Duman is LTJG in Turkish Navy� He gradu�
ated from the Turkish Naval Academy getting his BS
in Operations Research with honor degree� He received
his Ms�Cs� degree in the area of Systems Design and
Architecture from the Naval Postgraduate School� He
investigated the use and runtime overhead of CORBA

in DARPA�sponsored Management System for Hetero�
geneous Networks QUORUM project �MSHN� with Dr�
Debra Hensgen and Dr� Ted Lewis� He is currently a
systems engineer at Turkish Navy Software Develop�
ment Center working on a CORBA based communica�
tion infrastructure for Command Control Systems� His
area of interest are fault tolerant� real�time� CORBA
based distributed systems�

Debra Hensgen is an Associate Professor in the Com�
puter Science Department at The Naval Postgraduate
School� She received her PhD in the area of Distrib�
uted Operating Systems from the University of Ken�
tucky� She is currently a Principal Investigator of
the DARPA�sponsored Management System for Het�
erogeneous Networks QUORUM project �MSHN� and
a co�investigator of the DARPA�sponsored Server and
Active Agent Management �SAAM� Next Generation
Internet project� Her areas of interest include active
modeling in resource management systems� network re�
routing to preserve quality of service guarantees� visu�
alization tools for performance debugging of parallel
and distributed systems� and methods for aggregating
sensor information� She has published numerous papers
concerning her contributions to the Concurra toolkit for
automatically generating safe� e�cient concurrent code�
the Graze parallel processing performance debugger�
the SAAM path information base� and the SmartNet
and MSHN Resource Management Systems

David St� John is the head of sta� at the Heterogen�
eous Network and Computing Laboratory� He plays
a strong role in development of the MSHN prototype
and in directing students� research at the Naval Post�
graduate School� He has over six years experience in
object�oriented software development primarily for pro�
cess control� sensor collection� and Internet transaction
processing systems� He is a member of IEEE and IEEE
Computer Society� He was a recipient of the Chancel�
lor�s Fellowship and an MS degree in Engineering from
the University of California� Irvine in ���
� He received
his BS degree in Mechanical Engineering from the Uni�
versity of Florida in �����

Taylor Kidd obtained his Ph�D� from the University
of California at San Diego in ����� He is an active
researcher in theoretical and applied distributed com�
puting� As part of the SmartNet Team at NRaD he
led the SmartNet Research Team� Recently he joined
Debra Hensgen as co�director of the Heterogeneous Net�
work and Computing Laboratory� While part of the
SmartNet Team� he instigated a number of important
advances to the SmartNet Scheduling Framework� in�
cluding enhancing compute characteristic learning by
using Student�T techniques� performing experiments
and simulations exploring the performance of di�er�

ent RMS�s in homogeneous and heterogeneous envir�
onments� and fundamentally changing the way Smart�
Net learns and schedules by recognizing the basic pre�
dictable uncertainty of job run times� He has served
on the program committees of several conferences and
has worked as an acting subject area editor for JPDC�
Most recently� he is working under DARPA�s Quorum
program as a co�PI for MSHN and as a co� investigator
on the SAAM Project�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

